Skip to main content

People

Igor Novosselov

Faculty Photo

Research Professor
Mechanical Engineering

Adjunct Research Professor
Occupational and Environmental Health Sciences

Biography

Dr. Novosselov joined the department in 2014. Prior to joining the department, he worked as an R&D Manager and Sr. Research Scientist developing aerosol sampling instrumentation for nanoparticles, biological and chemical aerosols. His previous projects focused on characterization using the underlying physical principles governing particulate matter formation, the behavior of aerosol in the environment, and aerosol analysis. Other research included modeling of pollution formation and stability of the combustion systems using computational fluid dynamics and chemical reactor network modeling.

Education

  • Ph.D. in Mechanical Engineering, University of Washington, 2006
  • M.S. in Mechanical Engineering University of Washington, 2002
  • Engineering Diploma, Yaroslavl Polytechnic Institute, Russia, 1993

Research Statement

Novosselov Research Group (NRG) conducts a wide range of basic and applied research in the areas of fluid- and thermo-dynamics dynamics, supercritical fluids, nanomaterials, and aerosol sciences. Current research projects include the treatment of PFAS (forever chemicals) and other emerging pollutants in hydrothermal systems, non-traditional synthesis of metalorganic frameworks (MOFs) and their composites in supercritical CO2, and non-thermal plasma application for propulsion and active flow control. The aerosol science research is focused on novel sensing technologies for the chemical composition of particulate matter, low-cost sensor networks, and particle resuspension.

For more information of NRGs current projects, visit the NRG website.

Refereed Publications

ResearchGate Profile

Select patents

  1. Igor Novosselov, Aerodynamic Sampling of Particles and Vapors from Surfaces, US Patent 10274404, April 2019
  2. RA Gorder, IV Novosselov, G Kychakoff: Reverse Purge Flow Lenses, US Patent 20,170,276,595, 2017
  3. Igor V Novosselov, P Ariessohn: Trapped Vortex Particle-to-Vapor Converter. US Patent 9,744,490, 08/2017
  4. Peter C Ariessohn, Igor V Novosselov: Aerosol Collection Apparatus and Methods. US Patent 8539840, 09/24/2013
  5. Ariessohn PC, Novosselov IV, Skimmer for Concentrating an Aerosol, US Patent 7875095, 01/25/2011

Select publications

  1. Austin, C.; Li, J.; Moore, S.; Purohit, A.; Pinkard, B. R.; Novosselov, I. V. Destruction and defluorination of PFAS matrix in continuous-flow supercritical water oxidation reactor: Effect of operating temperature. Chemosphere 2023, 327, 138358.
  2. Pinkard, B. R.; Austin, C.; Purohit, A. L.; Li, J.; Novosselov, I. V. Destruction of PFAS in AFFF-impacted fire training pit water, with a continuous hydrothermal alkaline treatment reactor. Chemosphere 2023, 314, 137681.
  3. Glenn, K.; He, J.; Rochlin, R.; Teng, S.; Hecker, J. G.; Novosselov, I. Assessment of aerosol persistence in ICUs via low-cost sensor network and zonal models. Scientific Reports 2023, 13 (1), 3992.
  4. Li, J.; Austin, C.; Moore, S.; Pinkard, B. R.; Novosselov, I. V. PFOS destruction in a continuous supercritical water oxidation reactor. Chem. Eng. J. 2023, 451, 139063. DOI:
  5. Li, J.; Pinkard, B. R.; Wang, S.; Novosselov, I. V. Review: Hydrothermal treatment of per- and polyfluoroalkyl substances (PFAS). Chemosphere 2022, 307, 135888. DOI:
  6. Shetty, S.; Pinkard, B. R.; Novosselov, I. V. Recycling of carbon fiber reinforced polymers in a subcritical acetic acid solution. Heliyon 2022, 8 (12), e12242.
  7. Hecker, J. G.; He, J.; Rochlin, R.; Brannen, C.; Teng, S.; Glenn, K.; Novosselov, I. Measuring aerosols in the operating theatre and beyond using a real-time sensor network. Anaesthesia 2022, 77 (10), 1097-1105.
  8. Rasmussen, E. G.; Kramlich, J.; Novosselov, I. V. Synthesis of metal-organic framework HKUST-1 via tunable continuous flow supercritical carbon dioxide reactor. Chem. Eng. J. 2022, 450, 138053.
  9. He, J.; Huang, C.-H.; Yuan, N.; Austin, E.; Seto, E.; Novosselov, I. Network of low-cost air quality sensors for monitoring indoor, outdoor, and personal PM2.5 exposure in Seattle during the 2020 wildfire season. Atmospheric Environment 2022, 285, 119244.
  10. Vaddi, R. S.; Guan, Y.; Mamishev, A.; Novosselov, I. Analytical model for electrohydrodynamic thrust. Proceedings of the Royal Society A 2020, 476 (2241), 20200220.
  11. Mahamuni, G.; Rutherford, J.; Davis, J.; Molnar, E.; Posner, J. D.; Seto, E.; Korshin, G.; Novosselov, I. Excitation–Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter. Environmental Science & Technology 2020, 54 (13), 8198-8209.
  12. Rasmussen, E. G.; Kramlich, J.; Novosselov, I. V. Scalable Continuous Flow Metal–Organic Framework (MOF) Synthesis Using Supercritical CO2. ACS Sustainable Chemistry & Engineering 2020, 8 (26), 9680-9689.
  13. Pinkard, B. R.; Kramlich, J. C.; Novosselov, I. V. Gasification Pathways and Reaction Mechanisms of Primary Alcohols in Supercritical Water. ACS Sustainable Chemistry & Engineering 2020, 8 (11), 4598-4605.
  14. Vaddi, R. S.; Guan, Y.; Novosselov, I. Behavior of ultrafine particles in electro-hydrodynamic flow induced by corona discharge. Journal of Aerosol Science 2020, 105587.
  15. Guan, Y.; Riley, J.; Novosselov, I. Three-dimensional electroconvective vortices in cross flow. Physical Review E 2020, 101 (3), 033103.
  16. Davis, J.; Molnar, E.; Novosselov, I. Nanostructure transition of young soot aggregates to mature soot aggregates in diluted diffusion flames. Carbon 2020, 159, 255-265. DOI:
  17. Gupta, S.; Malte, P.; Brunton, S. L.; Novosselov, I. Prevention of lean flame blowout using a predictive chemical reactor network control. Fuel 2019, 236, 583-588.
  18. Davis, J.; Tiwari, K.; Novosselov, I. Soot morphology and nanostructure in complex flame flow patterns via secondary particle surface growth. Fuel 2019, 245, 447-457. DOI:
  19. Pinkard, B. R.; Gorman, D. J.; Tiwari, K.; Rasmussen, E. G.; Kramlich, J. C.; Reinhall, P. G.; Novosselov, I. V. Supercritical water gasification: practical design strategies and operational challenges for lab-scale, continuous flow reactors. Heliyon 2019, 5 (2), e01269.
  20. Pinkard, B. R.; Gorman, D. J.; Rasmussen, E. G.; Kramlich, J. C.; Reinhall, P. G.; Novosselov, I. V. Kinetics of formic acid decomposition in subcritical and supercritical water – a Raman spectroscopic study. International Journal of Hydrogen Energy 2019, 44 (60), 31745-31756.
  21. Guan, Y.; Novosselov, I. Numerical analysis of electroconvection in cross-flow with unipolar charge injection. Physical Review Fluids 2019, 4 (10), 103701. DOI: 10.1103/PhysRevFluids.4.103701.
  22. Guan, Y.; Novosselov, I. Two relaxation time lattice Boltzmann method coupled to fast Fourier transform Poisson solver: Application to electroconvective flow. Journal of computational physics 2019, 397, 108830.

News